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ABSTRACT

Channels in the style of CSP are a powerful abstraction. The Go language includes
them, inheriting much from earlier languages from Plan 9 and Research UNIX. But, to
use them as a system abstraction it is necessary to be able to send in-band errors along
with data and to stop senders when receivers are no longer interested in the data being
sent. This paper describes Belts, a new channel abstraction that includes such features.

Channels
The Go language includes channels as a builtin type. A channel is includes in its type the data type for ele-
ments sent through it. For example,

var c chan int

declares a channel to send int values. They are created using make in either unbuffered or buffered variants.
For example, this declares and creates a couple of channels:

unbufc := make(chan int)
bufc := make(chan int, 10)

Receiving from a channel blocks until an element can be received. Sending on an unbuffered channel
blocks until another process receives from it. Sending on a buffered channel blocks only when the buffer is
full. One operator is used to send or receive, depending on which side of the channel it is written. For
example:

bufc <- 0 // send 0, does not block
x := <-bufc // receive 0, copied to x.
unbufc <- 0 // send 0, blocks (no proc receiving)

Here the first two sentences proceed without blocking, because the message is buffered in the channel. The
last blocks because nobody is receiving in this example.

There is a construct to select one among multiple send or receive operations. When no operation may
proceed, the construct blocks. One some may proceed, one is executed at random and the construct termi-
nates. For example:

select {
case c1 <- 3:

// send 3 as soon as we can send to c1
case c2 <- 5:

// send 5 as soon as we can send to c2
case x := c3:

// receive x from c3 as soon as we can.
}

This constructs admits a default label to execute when no send or receive operation may be used, which
leads to non-blocking variants of send and receive. In this example,
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x := 0
select {
case x = <-c:

// receive x from c
default:

// didn’t receive, and didn’t block
}

we pretend that we received a zero if we couldn’t receive anything.
Another feature of channels is that we may close a channel, to signal the receiver that no further data

will be sent on it. In this example we send two values and close the channel, and later (or concurrently in
another process) we receive from the channel until we note it is closed:

// send something and close it.
c <- 1
c <- 2
close(c)

// receive from c until closed or a zero value is sent.
for <-c != 0 {
}

Once closed, a receive returns a zero value without blocking. But we can also check if the channel was
closed or if a zero value was just sent:

if x, ok := <-c; !ok {
// c was closed

}

In this case, ok is set to false if we couldn’t receive becase the channel was closed. Usually, to loop receiv-
ing the range operator is used instead:

for x := range c {
// use x as received from c

}

It is aware of close and behaves nicely when the sender is done.
There are more features documented in the Go Programming Language Specification, but what has

been said is enough to understand our motivation and the discussion that follows.

Going problems
There are problems with the behaviour of channels as described in the previous section.

One problem is that, to use channels as the primary structure used to glue different processes in one
application, we should be able to stop the sender when the receiver is no longer interested in data being
sent.

It has been argued that a second channel can be used to convey a termination note from the receiver
of data to the producer. However, this complicates the interfaces between the elements involved. If one
process is a data producer and another is a consumer, we should be able to connect them in very much the
same way we do with pipes:

producer | consumer

or in this case
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c := make(chan data)
// start a producer
go produce(c)
// start a consumer
go consume(c)

The code for the producer and the consumer should be as simple as follows:

func produce(c chan data) {
for {

x := make a new item
if c <- x failed {

break
}

}
}
func consume(c chan data) {

for x := range c {
// use x
if don’t want to use more {

tell c we are done
break

}
}

}

The argument against notifying the sender about the stop of the receiver is that a channel should convely
data only from the sender to the receiver. But, to cleanly terminate the sender if the receiver decides to stop
we have to complicate the code and do one of three things:
1 Use a second channel to notify the sender that the receiver is done.
2 Spawn a new process (or use the receiver process) to consume the rest of the stream of data without

actually processing it.
3 Let the sender block forever and forget about it.
The last two cases are a waste of resources, and thus should not be used in practice. In the first case, the
code would be more complex:

c := make(chan data)
endc := make(chan bool)
// start a producer
go produce(c, endc)
// start a consumer
go consume(c, endc)

where

func produce(c chan data, endc chan bool) {
for {

x := make a new item
select {
case c <- x:
case <-endc:

return
}

}
}

and



- 4 -

func consume(c chan data, endc chan bool) {
for {

x, ok := <-c:
if !ok {

break
}
// use x
if don’t want more {

close(endc)
break

}
}

}

Considering this code, the connection between then sender and the receiver is now two-ways. As it would
be if we could use the channel to indicate that we are done receiving, so the argument against a backward
flow of information does not seem sound at this point. We are still sending information backward, but, the
code is more complex and what would be a single abstraction for message passing is now two separate
structures.

But there are more problems. Another important one is that if the sender fails to produce an item, the
error indication is lost and can’t be send to the receiver. The receiver should have a way to know that the
sender had a problem, perhaps to propagate the error to others interested in the result.

To achieve this, we must further complicate the scheme to use data structure that packs either data or
an error indication, and then complicate the receiver code to unpack it. Or we must use a separate error
channel to convey error messages, which is even more complex.

If should be easy to let the producer notify an error to the consumer and terminate, and then let the
consumer notice at each reception if it was an error or a regular data message.

Belts mark I
To fix this issues, a new abstraction, belt channels has been built. By now, we have not modified the lan-
guage to include it, but written a package providing a data type for the new abstraction. A belt might be
defined as

// An typed belt channel.
type Chan struct {

Donec chan bool // notify the sender that the receiver is done.
Datac chan interface{} // send data or errors.
/* other unexported fields */

}

The Datac conveys data and the Donec conveys receiver-close indications to senders. We left these fields
public to let clients use belts in select constructs using more than one channel or belt but in the future it is
likely that all this will be hidden.

A belt can be used to send data or errors:

func (b *Chan) Snd(d interface{}) error

Here, d would be the desired data type to be sent or an error indication. Unlike with channels, if the
receiver is done, the send operation returns an error to the caller, and it decides what to do next. Perhaps
stop.

The receive operation tells errors apart from data:

func (b *Chan) Rcv() (interface{}, error)

If the sender is done, an error indication is returned. In the same way, if the sender posts an error through
the belt the receiver will get an error indication instead of data. Otherwise, a piece of data sent is received.
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The following operations can be used to close a belt for sending or for receiving:

func (b *Chan) CloseSnd()
func (b *Chan) CloseRcv()

The constructor functions creates either a buffered or an unbuffered belt as it could be expected.

func New() *Chan
func NewBuffered(nbuf int) *Chan

Another interesting feature enabled is that belts are polymorphic, unlike channels. Any type can be sent.
The language and its type assertions and reflection can be use to keep type safety, but multiple different
data items can be sent easily.

A protocol can be defined in a belt so that only certain message types (plus error indications) are
accepted (and other messages are rejected with error when trying to be sent). To define a protocol, the next
operation accepts an array (a slice actually) of example message values, each one being a pointer to a mes-
sage instance.

func (b *Chan) SetProto(msgptrs ...interface{})

In this case, the reflection interface in the language is used to accept or reject messages to be sent through
the belt. This makes it easy to define protocols made by different message types without having to define
facades for the set of messages.

There are wrappers that adapt belts to traditional reader and writer interfaces, so it would be easy to
write to a belt, read from it, or write a belt to a writer (to copy the data streamed to an external writer).

Further wrappers know how to pipe a belt to an external connection (a writer) and how to pipe a belt
from an external connection (a reader). In this case, the connection carries messages encoded as Gobs that
carry any of the types defined in the belt protocol or an error indication. This permits one belt to be con-
veyed through a network connection or through a system file or pipe.

It would be hard to do this with standard channels, because of the problems mentioned. However, it
is easy to maintain reasonable semantics that work fine in practice when writing clients and servers that use
belts to and from the network. Each network connection requires two different belts if it is to be duplex.

Example
As an example, this is how our example producer and consumer processes might be written:

func produce(c *belt.Chan) {
for {

// make a new x
if err := c.Snd(x); err != nil {

// couldn’t send. done.
break

}
// or to send an error...
c.Send(err)

}
c.CloseSnd()

}

and
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func consume(c *belt.Chan) {
for {

x, err := c.Rcv()
if err != nil {

// couldn’t receive. done.
break

}
// use x
if don’t want more {

c.CloseRcv()
}

}
}

The result is quite similar to that of a UNIX Pipe, although belts do not kill the sender process when the
receiver is gone (because they might have to terminate cleanly or might decide to do other things).

Mark I evaluation
The next is the output from the package benchmarks, which try to send 512 byte slices by different mecha-
nisms, using go processes.

BenchmarkChan 20000000 134 ns/op
BenchmarkAlt 5000000 345 ns/op
BenchmarkTSend 5000000 418 ns/op
BenchmarkTWrite 5000000 723 ns/op
BenchmarkTRead 1000000 1394 ns/op
BenchmarkPipe 1000000 2476 ns/op

The first one uses a native channel without being able to stop the sender. That is the fastest. The second
uses a select construct to let the receiver stop the sender. The third one uses a belt, and is not too slow when
compared to the second one. We have still to optimise the code, but it is fast enough to be used in practice
as it stands, compared to using a select directly. The extra time taken is probably due to the use of reflec-
tion.

The last three ones report the performance when using adaptors to write on the belt, or to read from
the belt, and the performance of a standard Pipe as implemented by go as a reference for this case.

Belts mark II
Thanks to a discussion with Roger Peppe, belts were optimised to be defined as:

// An typed belt channel.
type Chan struct {

Datac chan interface{} // send data or errors.
/* other unexported fields */

}

Instead of using a separate channel to notify receiver-closes to the sender, the data channel is simply closed
in that case. This triggers a panic in the sender which can be rescued by code like:
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func dontPanic(err *error) {
if recover() != nil {

*err = ErrClosed
}

}

func (b *Chan) Snd(d interface{}) (rerr error) {
/* ... */
defer dontPanic(&rerr)
b.Datac <- d
return nil

}

As an extra simplification, CloseSnd and CloseRcv are now gone and there is a single Close operation for
the belt.

With this change, the benchmark output becomes as shown next. Do not compare times with those of
the previous evaluation, because other things changed. What is interesting is to compare the relative perfor-
mance of the different measures in this benchmark.

BenchmarkSend 10000000 246 ns/op
BenchmarkWrite 5000000 601 ns/op
BenchmarkRead 2000000 827 ns/op
BenchmarkPipe 1000000 1556 ns/op
BenchmarkChan 20000000 139 ns/op
BenchmarkAlt 5000000 371 ns/op
BenchmarkTSend 10000000 293 ns/op
BenchmarkTWrite 5000000 652 ns/op
BenchmarkTRead 2000000 892 ns/op
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Future work
We will optimise and fine tune the interfaces for the belts in the near future, and will probably experiment
by modifying the language to make belts first-class citizens, so they can be used like channels in select and
other constructs. We will also experiment with belts used for network communication and conduct further
evaluation for them.


