CUROCO: a distributed architecture for the dynamic
generation, composition and use of context in highly
dynamic and heterogeneous environments-

[extended version]

Gorka Guardiola Muzquiz
Laboratorio de Sistemas, Universidad Rey Juan Carlos
Madrid, Spain

paurea@lsub.org

ABSTRACT do not solve the problem completely, because they raisedhe f
lowing questions: How do we share context information betwe
applications?. How do we integrate the user in all this?. Hiow
the applications that we already have benefit from context&an
extremely flexible architectures like The Context ToolkiO], are
far fetched from giving a uniform context support for applions
that may not be context-aware by themselves. Systems lilke Ga
[3] introduce context services at system level, but use #@rnrad
hoc fashion. For example, Gaia uses context to adapt itysiles
tem, but this is a particular use, not a general independanert
service. Applications benefit from it, but cannot interadtweon-
text directly in a general way that might not have to do witk th

The use of context is necessary for a rich interaction wiehubers
and adaptation of the system to their needs. However, how-to i
tegrate context with the applications and the system is yatre
solved problem. Looking at other services provided by ounco
puting platforms, we ask ourselves: How can context be made a
system service?. Making the context an application neaystem
service would permit to share and update it from differentrses
and applications, making the user able to interact with gilga
Even applications which are not context aware would be able t
benefit from this approach. We are designing and implemgrzim
application called CUROCO to deal with this issues.

filesystem.

. . . My purpose is to build a general context-aware architecture
Categories and Subject Descriptors have named CUROCO, to address all these problems. It will en-
D.4.7 [Software]: Operating Systems-Grganization and Design; able non context-aware applications to exploit contextsamgplify
D.4.3 [Software]: Operating Systems-Bistributed File Systems its use for new applications. It should permit changing peeers

of the system based on context information. The central isléa
be able to make partial calls on operations to the system amd c

Keywords plete them using context. Another main idea is to keep comex
CUROCO, Ubiquitous, Pervasive, Context Aware, SentiernCo files actualized by the system, permitting easy sharingptisen-
puting text and interoperability. By abstracting, aggregating aarving

context in independent entities completely outside theiegpon,
1. PURPOSE DESCRIPTION we may reach better reusability and interaction with the.use

In order to realize M. Weiser vision and make computer tethno

ogy ubiquitous, user interfaces must be simplified, makiegt re- 2. GOAL STATEMENT

quire less attention and input from the user. Obtaining exylicit My goal is therefore to build CUROCO, a context architecture
input from the user context is then made necessary. Thegobl specifically designed to solve the problems stated abovethet
with previous attempts to use context are middleware ibfuas moment, its design is composed of two parts. One is the contex
tures or libraries which require recoding the applicatiomoiting service, a filesystem which is filled by context aggregatousside
wrappers for them. An example of this is Aura [4]. These sohg programs which abstract and aggregate raw data and diffeoen

*This work has been funded by Spanish Ministry of Science and text values. The other Is a context-aware system commatas,
Technology, MCYT (TIC2001-1586-C03-01) and the Rey Juan Itgops completing requests relying on the context and userdo-
Carlos University PPR-2003-40 lon.

2.1 Exporting context as a filesystem
The idea is to export a distributed filesystem containingtexin

Permission to make digital or hard copies of all or part o thiork for in order to share it. The filesystem makes CUROCO able toatistr
personal or classroom use is granted without fee providatidbpies are context in a portable and easy to export way. Using simpliesed
not made or distributed for profit or commercial advantage @at copies naming conventions, it makes simplifies context sharingvbeh
bear this notice and the full citation on the first page. Toycotherwise, to applications on different systems and makes context acsethiat

republish, to post on servers or to redistribute to listquies prior specific becomes independent of the application. It can also be ddwe
permission and/or a fee. :

1¢t International Middleware Doctoral Symposium Toronto, Canada some applications as the part of the state of the applicatttinoh
Copyright 2004 ACM 1-58113-948-9$5.00. depends on the context and is kept outside it. In this wayrtfoe-i

mation is exposed and thus can be changed dynamically bsnekte
entities.

If it is the verb, this generates a lookup on a database fovene
suffix description (each verb has a suffix description agdhOn

Exposing context as a filesystem enables new applications tothe other side, if part of the suffix is specified (for the moirjest

share and access it easily. It also makes context aggregsdey to
program (they may be even shell scripts). We have alreadyenri

a simple infraestructure for gathering context about obrflam
different sources that we expose as files. Some of the datasom
from special file servers (e.g. the X10 [2] file servers), saomes
from simple files on a linux or Macos X system, or is generated d
namically by scripts or programs. It has been trivial to exjitcto

the web, generating a web page with information of presef@ke [
real-world mail, and other useful data.

The rationale behind using files to export context is thas i i
well known technology used everywhere. On almost everyaiper
ing system we have clients and servers for SMB or NFS for exam-
ple, and files can be accessed from any programming langnage i
simple way.

It can be argued that by using files we just push complexity to
another layer, to the contents of the files, but that is notctse.
Using files we solve for free (in a very portable way) the pesbl
of having different hierarchies and a naming system. Thizois
mally done using CORBA or some other middleware, like in the
Solar naming system [1] or Gaia’s context filesystem, or tsted
structure of XML documents [11]. The approach of using fikes i
better because it is more portable and simple. Not even CORBA
with its multiple bindings for languages and systems carchtte
interoperability of using files. Even simple devices like abite
phone using Java have a way to access files exported by bilnetoo
In addition, writing a filesystem is much simpler than is natiyp
acknowledged. An example for this is [6] where a filesysters wa
written using very few lines of code to fit in a Lego Mindstorit.
is also easy to reexport a filesystem on another format if fitois
available for the client. For example, a Windows system \&ith
NFS client can reexport the filesystem through SMB. UsingiPla
9 or Plan B which have binding and union directories we can go
even further and merge the trees from the different systesford
reexporting.

This part of our architecture has the same purpose as “The Con
text Toolkit” [10] or the “Solar System” net of aggregatonsdfil-
ters. The key difference is that our architecture is muchpgémand
interoperates better by using only a filesystem instead ofiallex
ware to export it to other applications.

2.2 Execution service

one slot), the correct verb for that (partially incompleseiffix is
looked up in the database if none is filled in by an aggregatuis

is done because suffix descriptions are attached to verbsveSo
need a verb in order to use its request slot description.r gtting
the order slot description the execution loop starts.

During the execution loop the slot description is exposeth¢o
context aggregators which using the context filesystem badi
ready specified slots can fill in the gaps till all the mandagiots
are completed. Once the operation is completed it is sentgoue
tion.

An example of the use of this execution service can be seen on
figure 1. On this figure,

1. A user clicks on a file of typavav.

2. As no context aggregator has any verb for this file, some
matching verb is looked up on the database (some things may
happen in the middle, like running commeaiite over it or
looking if it exists). A verb is found in the database, a pro-

gram calledravpl ayer
. The volume parameter is filled in (e.g. based on user state)

. The headphone parameter is filled in (e.g. based on leealiz
tion)

. The equalizer parameter is filled in (e.g. user interajtio

. The request is complete (all the mandatory commands are
filled in) so it commits and is executed.

2.3 Using context at system level

Our main goal is understanding how to use context and how to
aggregate itin a simple way at system level. Our way for ddfirig
is taking context out of the applications and making it a etyss
service. Once we finally achieve our goal, it will be much sim-
pler to program context-aware applications and to make ttes o
which are not context aware. CUROCO will use a completely new
approach which is not comparable to any existing toolkit éd-m
dleware as far as we know.

3. METHODOLOGY

We plan to develop a prototype in three phases.

The system commander is an execution service that changes pa

rameters to operations depending on the value of the cofiltesits-
tem and user interaction, combining the user and the comext
the execution loop for general purpose applications.

In our current design for CUROCO, all commands to the sys-
tem are built out of description slots. These slots are $ipations
of the kind of parameters that might fill a command line, mak-
ing it possible for programs to complete commands autoraiffic
Whenever an operation is sent to the system, these slotdedetfi
a loop by using interaction with the users and context aggceg.
They use the filesystem interface to obtain the context inéar
tion. Once all mandatory slots are filled, operations carcebee
To make an application context-aware the only thing neetlgg i
slot description.

An operation to the system is a set of description slots theat w
call request. An request is composed of two parts. One is the verb.
The other is the suffix. The verb is only one slot correspomdin
normally with a command and the suffix are the rest of the skts
request starts with the verb or part of the suffix already detepl.

1. Exploring different architecture designd and the useani-c
text as files.

2. Writing a simple prototype of the architecture and tryihg
with applications.

3. Integrating it in the OS we are writing, Plan B.

3.1 Exploring architecture designs and
context usage

We have been experimenting for some time now with the use of
context, considering alternative architectures. We hase tied
exporting context information of our lab using files. Thistext
comes from very heterogeneous sources, user activity nogon
Linux, Plan 9 and Mac OS, fileservers exporting X10 sensods an
image processing of our physical mailbox. We are using itrte p
gram applications, scripts and to show the lab state on a \agb p
as can be seen on [9]. There is also a video demo of our everyday
use of the context file system in [7].

1 A USER CLICKS ON A FILE (E.G. a .WAV)

2 ¢/ verb description lookup

EQ0

Already filled in
;/"////.//

g

3 ‘ VERB ‘ PARAM1 ‘ PARAM2 ‘ PARAM3 ‘
K/ ‘ VERB ‘ PARAM2 ‘ PARAM3 ‘
4
‘ PARAM2 ‘ PARAM3 ‘
5

USER
INTERACTIONS /
and
CONTEXT
AGGREGATORS

EXECUTION

Figure 1: Example of execution loop

3.2 Prototyping CUROCO

We are currently writing a prototype of the architecture &flfOCO
and the infrastructure it needs to work. This means mainiyirer
the slot description database and the mechanism to expesdeth
scription for the context aggregators to fill in. We will alsoite
some context aggregators and description slots for somkcapp
tions. As we need more applications and functionality, wi add
the implementation of more components, rewriting whateaat
of CUROCO limits us in this goal. The writing of CUROCO wiill
be done using wherever possible simple prototypes to ba@bket
the feel of it and evaluate it at each stage of development.

3.3 Integrating CUROCO and Plan B

In the near future, CUROCO prototype will be integrated into
the Plan B operating system using its PCM [5], becoming part o
the ubiquitous operating system we are writing.

4. EVALUATION

Evaluation will take the same three steps as development. On
each stage we plan to have working prototypes and experiwitnt
different context inputs and uses in order to be able to deter its
usefulness and try different alternatives. Some of thiskinars al-
ready done. We have found that even simple context datagipres
localization and state determined by heuristics and mownésen-
sors) can be very useful and that exporting it through fileseiy
portable and easy. See for example [2].

We plan to use CUROCO daily as part of the user interface for
the Plan B [8] operating system. That way we will be able to see
how difficult is to add new context sources and use it from iagpl
tions whether they are context aware or not.

Using our prototype we will measure what effect the use of O
has on the users, seeing if it makes their interaction wighuber
more comfortable and richer. We will measure also the extaal |
generated by using our architecture to make sure it dodswitthe
system too much or generate too many network traffic.

5. REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

[7]
(8]
9]

[10]

G. Chen and D. Kotz. Supporting Adaptive Ubiquitous
Applications with the SOLAR System. Technical Report
TR2001-397, Hanover, NH, 2001.

E. S. Francisco J. Ballesteros, Gorka Guardiola and Kl.Le
Traditional systems can work well for case study: Plan 9
from submitted for publication, 2004.

C. K. Hess and R. H. Campbell. A Context File System for
Ubiquitous Computing Environments. Technical report,
University of Illinois at Urbana-Champaign, 2002.

D. J.P.S. Aura: An architectural framework for user mipi
in ubiquitous computing enviromentsroceedings of the 3rd
Working |EEE/IFIP Conference on Software Architecture,
pages 23-31, 2002.

G. G. M. Katia Leal Algara, Francisco J. Ballesteros and
E. S. Salvador. Plan b’s personal command module.
commanding user activities in mobile and ubiquitous
enviromentsSubmitted for publication, 2004.

C. Locke. Styx-on-a-brick,
http://www.vitanuova.com/mkt/press/Styx-on-a-Briat.
LSUB. Lsub web site http://Isub.org, 2001.

LSUB. Plan b web site http://Isub.org/planb, 2001.

LSUB. Lsub web site for localization http://Isub.ordiw,
2004.

D. Salber, A. K. Dey, and G. D. Abowd. The context toalkit
Aiding the development of context-enabled applications. |
CHI, pages 434-441, 1999.

[11] UPNP. Upnp web site http://www.upnp.org, 2001.

