
CUROCO: a distributed architecture for the dynamic
generation, composition and use of context in highly

dynamic and heterogeneous environments∗

[extended version]

Gorka Guardiola Muzquiz
Laboratorio de Sistemas, Universidad Rey Juan Carlos

Madrid, Spain

paurea@lsub.org

ABSTRACT
The use of context is necessary for a rich interaction with the users
and adaptation of the system to their needs. However, how to in-
tegrate context with the applications and the system is yet an un-
solved problem. Looking at other services provided by our com-
puting platforms, we ask ourselves: How can context be made a
system service?. Making the context an application neutralsystem
service would permit to share and update it from different sources
and applications, making the user able to interact with it easily.
Even applications which are not context aware would be able to
benefit from this approach. We are designing and implementing an
application called CUROCO to deal with this issues.

Categories and Subject Descriptors
D.4.7 [Software]: Operating Systems—Organization and Design;
D.4.3 [Software]: Operating Systems—Distributed File Systems

Keywords
CUROCO, Ubiquitous, Pervasive, Context Aware, Sentient Com-
puting

1. PURPOSE DESCRIPTION
In order to realize M. Weiser vision and make computer technol-

ogy ubiquitous, user interfaces must be simplified, making them re-
quire less attention and input from the user. Obtaining non-explicit
input from the user context is then made necessary. The problem
with previous attempts to use context are middleware infrastruc-
tures or libraries which require recoding the application or writing
wrappers for them. An example of this is Aura [4]. These solutions

∗This work has been funded by Spanish Ministry of Science and
Technology, MCYT (TIC2001-1586-C03-01) and the Rey Juan
Carlos University PPR-2003-40

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
1st International Middleware Doctoral Symposium Toronto, Canada
Copyright 2004 ACM 1-58113-948-9 ...$5.00.

do not solve the problem completely, because they raise the fol-
lowing questions: How do we share context information between
applications?. How do we integrate the user in all this?. Howdo
the applications that we already have benefit from context?.Even
extremely flexible architectures like The Context Toolkit [10], are
far fetched from giving a uniform context support for applications
that may not be context-aware by themselves. Systems like Gaia
[3] introduce context services at system level, but use it inan ad
hoc fashion. For example, Gaia uses context to adapt its filesys-
tem, but this is a particular use, not a general independent context
service. Applications benefit from it, but cannot interact with con-
text directly in a general way that might not have to do with the
filesystem.

My purpose is to build a general context-aware architectureI
have named CUROCO, to address all these problems. It will en-
able non context-aware applications to exploit context andsimplify
its use for new applications. It should permit changing parameters
of the system based on context information. The central ideais to
be able to make partial calls on operations to the system and com-
plete them using context. Another main idea is to keep context on
files actualized by the system, permitting easy sharing, useof con-
text and interoperability. By abstracting, aggregating and serving
context in independent entities completely outside the application,
we may reach better reusability and interaction with the user.

2. GOAL STATEMENT
My goal is therefore to build CUROCO, a context architecture

specifically designed to solve the problems stated above. Atthe
moment, its design is composed of two parts. One is the context
service, a filesystem which is filled by context aggregators,outside
programs which abstract and aggregate raw data and different con-
text values. The other is a context-aware system commander,that
loops completing requests relying on the context and user interac-
tion.

2.1 Exporting context as a filesystem
The idea is to export a distributed filesystem containing context

in order to share it. The filesystem makes CUROCO able to abstract
context in a portable and easy to export way. Using simple text and
naming conventions, it makes simplifies context sharing between
applications on different systems and makes context a service that
becomes independent of the application. It can also be viewed by
some applications as the part of the state of the applicationwhich
depends on the context and is kept outside it. In this way the infor-

mation is exposed and thus can be changed dynamically by external
entities.

Exposing context as a filesystem enables new applications to
share and access it easily. It also makes context aggregators easy to
program (they may be even shell scripts). We have already written
a simple infraestructure for gathering context about our lab from
different sources that we expose as files. Some of the data comes
from special file servers (e.g. the X10 [2] file servers), somecomes
from simple files on a linux or Macos X system, or is generated dy-
namically by scripts or programs. It has been trivial to export it to
the web, generating a web page with information of presence [9],
real-world mail, and other useful data.

The rationale behind using files to export context is that it is a
well known technology used everywhere. On almost every operat-
ing system we have clients and servers for SMB or NFS for exam-
ple, and files can be accessed from any programming language in a
simple way.

It can be argued that by using files we just push complexity to
another layer, to the contents of the files, but that is not thecase.
Using files we solve for free (in a very portable way) the problem
of having different hierarchies and a naming system. This isnor-
mally done using CORBA or some other middleware, like in the
Solar naming system [1] or Gaia’s context filesystem, or the nested
structure of XML documents [11]. The approach of using files is
better because it is more portable and simple. Not even CORBA
with its multiple bindings for languages and systems can match the
interoperability of using files. Even simple devices like a mobile
phone using Java have a way to access files exported by bluetooth.
In addition, writing a filesystem is much simpler than is normally
acknowledged. An example for this is [6] where a filesystem was
written using very few lines of code to fit in a Lego Mindstorm.It
is also easy to reexport a filesystem on another format if it isnot
available for the client. For example, a Windows system withan
NFS client can reexport the filesystem through SMB. Using Plan
9 or Plan B which have binding and union directories we can go
even further and merge the trees from the different systems before
reexporting.

This part of our architecture has the same purpose as “The Con-
text Toolkit” [10] or the “Solar System” net of aggregators and fil-
ters. The key difference is that our architecture is much simpler and
interoperates better by using only a filesystem instead of a middle-
ware to export it to other applications.

2.2 Execution service
The system commander is an execution service that changes pa-

rameters to operations depending on the value of the contextfilesys-
tem and user interaction, combining the user and the contextinto
the execution loop for general purpose applications.

In our current design for CUROCO, all commands to the sys-
tem are built out of description slots. These slots are specifications
of the kind of parameters that might fill a command line, mak-
ing it possible for programs to complete commands automatically.
Whenever an operation is sent to the system, these slots are filled in
a loop by using interaction with the users and context aggregators.
They use the filesystem interface to obtain the context informa-
tion. Once all mandatory slots are filled, operations can execute.
To make an application context-aware the only thing needed it its
slot description.

An operation to the system is a set of description slots that we
call request. An request is composed of two parts. One is the verb.
The other is the suffix. The verb is only one slot corresponding
normally with a command and the suffix are the rest of the slots. A
request starts with the verb or part of the suffix already completed.

If it is the verb, this generates a lookup on a database for theverb
suffix description (each verb has a suffix description attached). On
the other side, if part of the suffix is specified (for the moment just
one slot), the correct verb for that (partially incomplete)suffix is
looked up in the database if none is filled in by an aggregator.This
is done because suffix descriptions are attached to verbs. Sowe
need a verb in order to use its request slot description. After getting
the order slot description the execution loop starts.

During the execution loop the slot description is exposed tothe
context aggregators which using the context filesystem and the al-
ready specified slots can fill in the gaps till all the mandatory slots
are completed. Once the operation is completed it is sent to execu-
tion.

An example of the use of this execution service can be seen on
figure 1. On this figure,

1. A user clicks on a file of type.wav.

2. As no context aggregator has any verb for this file, some
matching verb is looked up on the database (some things may
happen in the middle, like running commandfile over it or
looking if it exists). A verb is found in the database, a pro-
gram calledwavplayer .

3. The volume parameter is filled in (e.g. based on user state)

4. The headphone parameter is filled in (e.g. based on localiza-
tion)

5. The equalizer parameter is filled in (e.g. user interaction).

6. The request is complete (all the mandatory commands are
filled in) so it commits and is executed.

2.3 Using context at system level
Our main goal is understanding how to use context and how to

aggregate it in a simple way at system level. Our way for doingthis
is taking context out of the applications and making it a system’s
service. Once we finally achieve our goal, it will be much sim-
pler to program context-aware applications and to make the ones
which are not context aware. CUROCO will use a completely new
approach which is not comparable to any existing toolkit or mid-
dleware as far as we know.

3. METHODOLOGY
We plan to develop a prototype in three phases.

1. Exploring different architecture designd and the use of con-
text as files.

2. Writing a simple prototype of the architecture and tryingit
with applications.

3. Integrating it in the OS we are writing, Plan B.

3.1 Exploring architecture designs and
context usage

We have been experimenting for some time now with the use of
context, considering alternative architectures. We have also tried
exporting context information of our lab using files. This context
comes from very heterogeneous sources, user activity programs on
Linux, Plan 9 and Mac OS, fileservers exporting X10 sensors and
image processing of our physical mailbox. We are using it to pro-
gram applications, scripts and to show the lab state on a web page
as can be seen on [9]. There is also a video demo of our everyday
use of the context file system in [7].

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

������
������
������
������
������

������
������
������
������
������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

wavplayer

wavplayer

wavplayer

Foo.wav

Foo.wav

Foo.wav

Foo.wav

Foo.wav

wavplayer volume 2

volume 2 headphone

volume 2 headphone equalizer onUSER
INTERACTIONS
and
CONTEXT
AGGREGATORS

PARAM3PARAM2PARAM1VERB

VERB PARAM2 PARAM3

PARAM2 PARAM3

PARAM3

verb description lookup

EXECUTION

Already filled in

A USER CLICKS ON A FILE (E.G. a .WAV)

2

3

4

5

6

1

Figure 1: Example of execution loop

3.2 Prototyping CUROCO
We are currently writing a prototype of the architecture of CUROCO

and the infrastructure it needs to work. This means mainly writing
the slot description database and the mechanism to expose this de-
scription for the context aggregators to fill in. We will alsowrite
some context aggregators and description slots for some applica-
tions. As we need more applications and functionality, we will add
the implementation of more components, rewriting whateverpart
of CUROCO limits us in this goal. The writing of CUROCO will
be done using wherever possible simple prototypes to be ableto get
the feel of it and evaluate it at each stage of development.

3.3 Integrating CUROCO and Plan B
In the near future, CUROCO prototype will be integrated into

the Plan B operating system using its PCM [5], becoming part of
the ubiquitous operating system we are writing.

4. EVALUATION
Evaluation will take the same three steps as development. On

each stage we plan to have working prototypes and experimentwith
different context inputs and uses in order to be able to determine its
usefulness and try different alternatives. Some of this work has al-
ready done. We have found that even simple context data (presence,
localization and state determined by heuristics and movement sen-
sors) can be very useful and that exporting it through files isvery
portable and easy. See for example [2].

We plan to use CUROCO daily as part of the user interface for
the Plan B [8] operating system. That way we will be able to see
how difficult is to add new context sources and use it from applica-
tions whether they are context aware or not.

Using our prototype we will measure what effect the use of CUROCO
has on the users, seeing if it makes their interaction with the user
more comfortable and richer. We will measure also the extra load
generated by using our architecture to make sure it doesn’t slow the
system too much or generate too many network traffic.

5. REFERENCES

[1] G. Chen and D. Kotz. Supporting Adaptive Ubiquitous
Applications with the SOLAR System. Technical Report
TR2001-397, Hanover, NH, 2001.

[2] E. S. Francisco J. Ballesteros, Gorka Guardiola and K. Leal.
Traditional systems can work well for case study: Plan 9
from submitted for publication, 2004.

[3] C. K. Hess and R. H. Campbell. A Context File System for
Ubiquitous Computing Environments. Technical report,
University of Illinois at Urbana-Champaign, 2002.

[4] D. J.P.S. Aura: An architectural framework for user mobility
in ubiquitous computing enviroments.Proceedings of the 3rd
Working IEEE/IFIP Conference on Software Architecture,
pages 23–31, 2002.

[5] G. G. M. Katia Leal Algara, Francisco J. Ballesteros and
E. S. Salvador. Plan b’s personal command module.
commanding user activities in mobile and ubiquitous
enviroments,Submitted for publication, 2004.

[6] C. Locke. Styx-on-a-brick,
http://www.vitanuova.com/mkt/press/Styx-on-a-Brick.pdf.

[7] LSUB. Lsub web site http://lsub.org, 2001.
[8] LSUB. Plan b web site http://lsub.org/planb, 2001.
[9] LSUB. Lsub web site for localization http://lsub.org/who,

2004.
[10] D. Salber, A. K. Dey, and G. D. Abowd. The context toolkit:

Aiding the development of context-enabled applications. In
CHI, pages 434–441, 1999.

[11] UPNP. Upnp web site http://www.upnp.org, 2001.

