= N
>
.

4 -

N

> A

Building the Octopus

Francisco J. Ballesteros Spyros Lalis Enrique Soriano
12/21/2006
nemo@lsub.org lalis@inf.uth.gr esoriano@lsub.org
ABSTRACT

Octopus is the internal name for a system designed to provide ubiqg-
uitous access to computing resources. Its approach is unique in that the
central idea to distribute the system is to centralize everything on a per-
sonal computer. Devices are later connected to this central system to pro-
vide distributed computing. This memorandum describes the initial
design and underlying ideas for the new system.

1. Problem Statement

Today computing environments are complex. They are made of a miriad of devices
and machines interconnected through multiple networking technologies. They are het-
erogeneous, dynamic, must support network partitions, have administration problems,
run different sets of system software, have different applications and capabilities, and
the list goes on. Many of these problems are increased because we are considering a
distributed system made of heterogeneous and volatile components.

However, on a globaly connected world, the environment is no longer distributed,
is no longer heterogeneous, and is no longer volatile.

Google [4] is an excelent example that can be used to support this claim, i.e., to
justify that we would rather be no longer pursuing distributed, heterogeneous, and
dynamic environments. It centralizes the implementation, and provides ubiquitous
access to it. Users open their browsers, address them to pages.google.com or to
calendar.google.com and start working. We argue that we can apply the same idea to the
whole operating system.

The google file system [4] is another example. It centralizes control, to handle with
a much more simple, centralized, implementation the miriad of distributed storage and
computing devices used to implement the service. It builds a distributed file system by
centralizing its core algorithms and control, and distributing data. The same underlying
idea could be applied to the system software. We could stick to a single system, central-
izing control, but alowing the system to span all the distributed devices of interest.

-2

Systems like WebOS [9] tried to do this. Arguably, it seems they failed. But we argue that
we just have to try harder. Our proposal is to adopt the Internet as the system bus, to
plug any device in the system.

2. Computing Environment

The computing environment considered for the target system is depicted in Figure
1. It reflects reality as of 2006, and is expected to be even more common in the upcom-
ing years.

Local Area
Network

Internet
Link

Local Area
Network

i
o

ﬁg@
0

_
50 EE). o
Figure 1: Computing Environment for the new system

The first assumption is that all computers are connected through some kind of
internet link. This includes not only computers, but also any computing device (e.g.,
DVD players) that provides one or more resources (e.g., playing DVDs).. The resources
are arranged so that there are islands connected through high speed local area links
(e.g., Gigabit Ethernet, FastEthernet, or fast 802.11 WavelLan networks).

Resources within a single LAN are very well connected and have no latency or band-
with problem at all. However, for a given user and time, there are multiple islands of
interest. The links between different LANs are expected to have poor latency and band-
width, although they are expected to be roughly equivalent to today DSL lines.

In general, most resources are located within a LAN, colocated with many other
ones. However, it is also feasible that some devices of interest for the user are either
isolated, connected directly through WAN, DSL, Bluetooth, or other poor links.

We consider only a single exception to what we have said. In some cases, users
may want to use only a single device, disconnected from the rest of the world.

The second assumption is that there is plenty of computing capacity on most
computers. This means that the power of a single computer suffices for most if not all
the tasks of interest for the user. Note that we refer to full computers, and not to hand-
held or specific purpose devices.

Our last assumption is made regarding the user needs. We assume that the user
wants to use his/her devices with his computer. In general, provided that the user is
connected to his/her personal computer, the user wants simply to be able to use the

-3-

software (both system and applications) while being able to employ whatever device may
be in the network.

3. System description

There is a single dedicated computer per user. We refer to it as the computer. If
a user has more than one (which is the common case), one of them is designated as the
computer. All user programs execute on the computer, irrespectively of the user’s loca-
tion and of the devices and resources required to run them.

In this system model, the computer does not have any input/output resources of
its own; we think of it as a box with lots of (virtual) memory and processing power. If
there are 1/0O devices, they are considered to be attached to the network and not to the
computer itself. The scheme is depicted in figure 2.

Figure 2: System Model: The network is the bus to connect devices to the single computer

The computer is considered to be highly available. This can be achieved either by
installing watchdogs to restart it after software failures and/or by replicating some of its
components (e.g., by implementing it using two or three separate computers that are
considered as a single one from the rest of the world).

Programs running on the computer employ resources, such as storage, bitmap
screens, keyboards, pointers, audio, image and video recorders and players. These
resources are provided by peripheral devices or by applications running on other sys-
tems (in this case they are considered as devices and not as applications by our system).

We make a difference between devices and resources. A device is a piece of hard-
ware, perhaps part of a computer, that provides one or more services. In some cases,
an application program of a traditional operating system may be also considered as a
device. For example, a DVD reader, an audio card, a MP3 player program, etc. are
devices for the octopus. A resource is an artifact that provides a certain service. For
example, to play MP3 files, a player resource is needed. The difference between device
and resource is clean if we consider that a single device (e.g., an audio card) can provide
more than one resource (e.g., speech, MP3 player, and text recognition).

The devices providing such resources can be stationary or mobile, and communi-
cate with the computer via a file system protocol [6]. Although devices can be highly
heterogeneous, are distributed, mobile, and can be switched on and off at any time, the
computer is a single, central, homogeneous, system where all the system software runs.

When resources are provided by other computers using other operating systems,
we export just the resources of interest indenpendently of the native system of the for-
eign computer. In this sense, this alien system is just more hardware for the octopus.

-4 -

Access to resources is transparent with respect to the “physical connection technol-
ogy” used to attach them to the computer. This is similar to using USB over different link
technologies. In our case, octopus can use the 9P file system protocol (plus some
extensions) over IP or other transports.

In the computer, programs see no difference between accessing a resource via a
local hardware bus, a system extension bus, external serial and parallel links, and
TCP/IP. type of network, including the Internet. For us, Internet is the system bus.

This means that the interfaces between resources and the rest of the octupus must
be of a high-level of abstraction and must be designed with poor links in mind. We map
these interfaces into virtual file trees, following the Plan B aproach [3], which is indeed a
follow up of the ideas in Plan 9 [6] and UNIX.

4. Benefits and Drawbacks

The proposed system model has several benefits. The most important one is
simplicity. Because all the implementation is kept centralized, the system and the appli-
cations can be kept simple. There is no need for distributed garbage collection, coordi-
nation amount heterogeneous and distributed systems, complex peer to peer protocols,
and so on.

Another important benefit is ubiquitous access to the system, because most popu-
lar systems are to be considered resource providers for the octopus. This includes web
navigators as user interface devices. Unlike in other descendants of WebOS, the octopus
permits using local devices as well (not just the user interface within the web page).

There will be fast boot and suspend/resume, because the system will never shut-
down. Only, external devices may be disconnected and reconnected. But both the sys-
tem and applications will continue operation despite this fact.

The system is easier to protect, provided that devices are secured. This follows
because there is only one system to protect. In the end, system security depends on
which devices (linked to the octupus) are able to obtain or supply data for the system.

Administration gets simplified. There is only one system to maintain. Everything
else are stateless devices. In fact, the central computer might be provided by a third
party responsible for its adminstration.

There are also some drawbacks. The most important one is that it will be easy to
waste resources because that is deeply assumed by our design. A countermeasure is to
try to exploit idle resources by making them available to the computer. Of course, most
of the code to run user interfaces would be running at peripherical devices and comput-
ers, relieving the central computer from that task. Nevertheless, we strictly follow our
principle that all the software runs in the central computer, including all applications.

A failure in the central computer renders the whole computing system useless.
This means that measures must be taken to make it highly available. Because software
failures are more usual than hardware faults, watchdogs used to restart the system upon
failures might suffice.

Because resources are assumed to be connected to the computer, this may lead to
expenses due to connections used by mobile devices. In some cases, the mobile device
might work isolated, but our approach tends to keep it connected at all times with the
central computer.

Device interfaces must be of a high level of abstraction, because otherwise they
would make the system unbearingly slow when the bus is indeed a WAN connection.
This means that there can be problems to access low-level interfaces.

5. System Resources

This section introduces some important resources for the operation of the system,
and describes the main design guidelines for all of them. In general, all resources are
exported using small (virtual) file trees. These file trees are imported into the computer
using a import mechanism similar to that in Plan B.

5.1. Copy

Our model is to let resources (on devices) to be accessed only from within pro-
grams that execute on the computer. In theory this is enough to do anything. In prac-
tice, it is important to support direct device-to-device data transfers between devices,
to relieve both computers and the network from a lot of useless work and traffic. In
some cases, this may even be the difference between being able to perform the
requested task or not being able to do that.

The typical example scenario is to copy a (perhaps large) file located on a DVD
reader to a nearby device, e.g., a DVD player. Clearly, it is desirable to do this with a
minimal involvement of the computer. Note that the computer might be poorly con-
nected to both devices, although both devices might be well interconnected as shown in
figure 3.

copy
request

Figure 3: The computer asks for a copy, but bytes can be transferred between devices.

A lot of flexibility can be achieved by introducing a copy resource loated at the tar-
get device. This resource provides a service to read bytes from another resource and
then (locally) copy them to a local resource. This means that most devices must feature
a local program for performing this task. Adhering to our resource-based model, we
camouflage this in the form of a special copy resource. You can think of the copy device
as a network-enabled DMA device. The copy device permits transferring parts of
resources (i.e., files), to support streaming and the user request blocks while the
requested transfer is in progress.

The operation of this artifact is best shown with an example. Figure 4 shows two
resources and a copy resource that can be used to transfer data between them. As we
said before, all resources are provided through file based interfaces.

In the figure, there are two devices involved (depiced by rectangles). Colocated
with the target resource is a copy resource. The source resource is at a different
machine. Assuming that a name space in the computer has the target device mounted at
/target and the source device at /source, we can establish a copy as follows:

(@) ; taddr=‘{cat /target/addr}
(2) ; saddr=‘{cat /source/addr}
(3) ; copyop=‘{cat /dev/random}
4 ; echo $taddr 0 $saddr 0 0 > /copy/$copyop

The example shell session reads (line 1) /target/addr to learn the address of the

target copy source

Figure 4: Files involved in a copy operation between two devices.

target resource. An address is a network address plus an optional path and file tree spec
(similar to volume addresses in Plan B). The same is done for the source (line 2). All
resources must have a addr file to support copy.

Creating a file in the copy resource (which is assumed to be already mounted) and
writting into it the destination address, the offset into the resource file, the source
adress, the offset for it, and the maximum number of bytes to transfer (0 for all of
them), initiates a copy between the devices as shown in figure 3. The write operation
blocks while the copy is in progress. File names are randomized (line 3) to avoid name
clashes.

While the copy is in progress, the copy device can provide a status file (e.g.,
4572 .status in the example) that reports the last offset copied on each read.

The copy resource must be registered with the computer and requires a
capability-like protection scheme. We assume that there is a single copy file system
mounted in the computer, that interfaces to remote copy resources. This makes things
more simple for the rest of the system.

As a convenience, a library function with the prototype shown here

ulong copy(char* to, vlong tooff, char* from, vlong fromoff, ulong count);

can be provided to give access to the copy device in a simple way. This function
can determine the resource addresses and use the copy device without placing the bur-
den on the user. Besides, when the devices do not support the copy operation (i.e., do
not provide the /addr file on their trees), the implementation can fall back to using
read(2) and write(2) and the application would not notice (but for the lower speed).

Note that the computer may now request one resource to retrieve data from
another without the intervention of the computer. The access control scheme intro-
duced below tolerates this behaviour without requiring additional mechanisms or proto-
cols.

5.2. Storage

A storage resource has the form of a (remote) file system like in Plan 9 and Plan B.
Any device with storage capacity can provide a storage resource. Pluggable media in
foreign systems, such as disks, USB sticks, and CD/DVD readers, can also be turned into
(proper) storage resources, via wrappers that adhere to the (file-based) resource regis-
tration and access protocol and (dynamically) register themselves with the computer.

Because storage plays a key role in personal computing, a basic and reliable stor-
age resource must be always connected to the computer, acting as its main program
and data repository. In most cases, the computer would page binaries only from this

-7 -

resource. The storage capacity of the repository can be increased in a straightforward
way, simply by adding more (reliable and always connected) storage resources (e.g.
disks). An appropriate backup/replication mechanism is required to tolerate failures.

Of course, any portable device can contribute with less reliable and/or not always
available storage resources. Since these resources may "appear” and "disappear" dynam-
ically, they are more likely to be employed by people in causal recreational and enter-
tainment activities, or to hold mostly data and not programs.

It is also important to note that the volatility of such storage resources is non-
critical for program execution. For this reason the system does not have to provide any
advanced storage resource management. Programs interested in exploiting volatile stor-
age resources must explicitly discover them at runtime and must also be able to tolerate
failures when trying to access them. If a program (or the user) wishes to guarantee that
a particular storage resource (or file) will be "always accessible" then it must move/copy
it to the computer’s repository. ldeas from both Venti [7] and Omnistore [5] can be
applied here.

5.3. Caching

Provided that it would be common to have the setup shown in figure 3, where data
transfers may be performed between devices, it is convenient to cache data at the target
of the copy operation. This can speed up system operation when the connection
between the target and source devices is not within a single well-connected island.

In general, caching can be performed by the copy device itself, by keeping a persis-
tent cache on a near-by storage resource. This takes advantage of resources outside the
central computer that are always wasted by our design.

When a copy operation is sent to the copy device, the device issues a stat to the
source resource. If this resource is up-to—date with respect to the cached copy, the copy
proceeds within the machine where the copy device is located. Otherwise, the resource
is read and the cache updated. To maintain coherency, the cache is always write-
through and in all cases checks out that the source is indeed the cached data.

An interesting device to place caching into is a USB memory stick. This can be con-
sidered as a network enhancer for the octopus. The user may roam and, when using a
remote terminal built out of devices far away from the system, plung its network
enhancer in the terminal. The copy device would locate its cache and use it.

5.4. User Interfaces

User interface resources are employed to allow an application program (running on
the computer) to interact with a user via (portable) devices. The computer does not
have any reliable and always connected device to support the Ul. All /O resources used
for Uls are provided by external devices that are "attached" to the computer in an ad-
hoc fashion. As a consequence, the type and amount of resources (e.g., screen sizes
and number of screens) that are available to the computer vary in time. It is the job of
the system to assign the available Ul resources to the currently running applications.

The abstraction of Ul resources is done along the lines of omero [2] in order to
maximize flexibility and versatility while minimizing communication requirements
between devices and the computer. This is so to let our model work over long distances
(bad latency) and for a large number of concurrently running applications on the com-
puter (poor bandwidth).

5.5. Sensors and Actuators

Devices intented to sense the physical environment and to actuate on it are to be
handled like other resources, by modelling them as virtual file trees and then plugging
them into the (single) computer. For an example of how Plan B did this, refer to [1], but
note that now there is only a single computer. All user automations for the environment
would simply run on it.

5.6. Other resources

In general, we require either one or more abstract interfaces for each resource.
This is a consequence of trying to minimize latency and bandwidth needs. For instance,
for audio, we would export serveral diferent resources for the very same audio output
device:

1 A voice output device accepts text to be spoken. This is very efficient for talking to
the device across the network. A voice synthesis program runs locally near the out-
put device and therefore we both relieve the computer from performing the synthe-
sis and the network from transfering all the raw audio.

2 A MP3 output device accepts MPEG 2 Layer 3 encoded files. This is better than
transfering raw PCM samples.

We omit the discussion of other devices, all of them must be reworked along the same
lines.

6. Security

The user must be able to use his/her computer (programs) in conjunction with his
devices (resources). Some times, the user would borrow or lend resources on devices of
other people. Also, it must be possible to support the notion of public-domain devices
which could provide resources to anyone wishing to use them.

We are considering using capabilities to meet these requirements. The scheme
would be similar to other capability-based file system security architectures.

6.1. Access Control

All devices owned by a user are given appropriate keys and credentials that allow
them to perform the following tasks:

Prove to the user’s computer that they are owned by the same user
Encrypt data exchange with the computer;

Check that a capability is appropriate for the requested resource access.
Prove to other devices that they are owned by the same user.

Encrypt data exchange that takes place directly between devices.
Authenticate the computer. Authentication has to be bi-directional.

For each resource provided by a device that belongs to the user, added to the com-
puter registry, the system generates a special passe par tous capability. This can be
later handed over to any program that wishes to access the resource. The program then
sends the capability along with access request to the resource, which performs the
requested operation if the capability is appropriate.

A v AW N~

6.2. Delegation

Say user A wishes to allow user B to access a resource R on device D (owned by A).
This can be achieved as follows: (1) A asks B to give him the name of his computer; (2) A
uses a special resource access control application (running on A’s computer) to generate
a capability for accessing R on D for any program that runs on B’s computer; (3) A’s
computer generates an appropriate capability; (4) A’'s computer informs device D

-9-

(resource R) about the existence of this new capability; (5) A’s computer sends a
resource registration for R on D along with the capability, using the standard resource
registration protocol, to B’s computer; (6) B’s computer creates a new resource registra-
tion for this particular resource and associates it with the capability received; (7)
resource R on device D of A becomes visible to B’s programs .

Capabilities generated for programs running on the computers of other people may
be given an expiration date when creating them. However, timeouts are not enough if A
wants to (suddenly) stop B from accessing R, e.g. as soon as B walks away from A. In
this case A must explicitly revoke B’s capability. Given the above approach, this can be
achieved as follows: (1) A uses the resource access control application to cancel B’s
capability for R on D; (2) A’s computer informs device D (resource R), which aborts any
ongoing access requests that have been made using this capability (and refuses to
accept any new access requests that carry this capability).

This approach can be nicely extended to accommodate public-domain devices, as
follows. Each public-domain device features a special locally running resource control
program that is waiting to accept the name of a user’'s computer. As soon as this is
done the program issues appropriate capabilities for its local resources, and registers
them with the user’s computer (as above). These capabilities are automatically revoked
(as above) upon timeout or as soon as the name of another computer is input.

6.3. Proposed Scheme: Copy Operation

The security scheme can be based on SHAD [8] and capabilities that are used in
order to permit the copy operation among devices. Capabilities are nothing but keys.
These keys are generated, used and discarded.

The copy operation is performed this way:

1 The computer sends a key K plus a (very short) number P to the the target device
writing the data in a file named cap served by its FS.

2 The computer sends the same key K to the source device, plus a file name N and
the short number P. It writes the data in the file cap of the source FS.

3 Let Port be the port in which source FS is listening. The target device opens a 9p
connection to Port+p, and it starts the 9p protocol ciphered with the key K. This is
a 9p connection without authentication.

The source FS can decrypt the connection, because it knows K.

5 The source FS knows the name of the requested file, N. Therefore no other file
can be accessed. The FS ignores operations such as walks etc. Attach’s FID is
ignored, and the attach is performed over the FID representing the root of n. When
an open is performed, it doesn’t care about the specified FID. It opens the file N.
Then, the only allowed operations are sequential reads until EOF and clunk.

6 Target device reads and clunks the file.

7 Source FS includes K in a black list. K cannot be used anymore (within a reason-
able time) to access this FS.

P allows to have concurrent copy operations in a single device. K adds security
(authentication+confidentiality) to the operation. Communication between the com-
puter and the devices is secured with a previous set device secret, the same way that
SHAD’s terminal key.

6.4. Working with one device that does not belong to the user

Let TCa be the computer of user A, and TCb the computer of user B. Db is a device
that belongs to B, and Da belongs to A. TCa and TCb share a secret, a pairing key.
When A needs to work with Db as target and Da as source:

-10 -

1 Db sends to TCa a confirmation message to start the protocol. Confirmation can be
avoided through configuration, but it’s needed by default. This message must be
authenticated, and we can use a protocol like the one described in SHAD (terminal
sharing protocol).

2 If A confirms the operation, TCa asks TCb for permission and sends P and N. User
B can cancel the operation in this very moment if he wants to. Confirmation can be
avoided through configuration, but it’s needed by default.

3 Control access to devices can be performed by SHAD’s roles, that is an ACL and
RBAC mixture.

4 If B grants access, TCb generates K and writes it in the file cap of Db’s FS,
together with P and N.

5 TCb sends K to TCa.
TCa writes K to Da’s cap file, together with P and N..

7 Db opens a 9p connection with Da, just like the previous case (described above). It
reads and clunks the FID. K is discarded.

The same protocol can be performed when Db is the source and Da is the target.

6.5. Confirmations

Users have a mobile device that always carry on, a-la UbiTerm. This device has a
key assigned and has a open (encrypted) connection with TC. The device runs Oshad, a
graphical front-end for SHAD. Confirmations are performed in this device. It also emits
notifications to the user.

6.6. Enhanced capabilities

We could include additional restrictions to the capabilities. A counter C can be
used to permit the capability be reused many times. We can also use a timeout T to
make the capability expire. These variables could be sent together with K, P, and N.

Note that these restrictions has to be generated by the computer of the owner of
the source device, and they must be sent directly from the computer to the source
device’s FS. If not, the could be faked.

6.7. Physical Security

Capabilities are (safely) kept on the computer, not on (portable) devices that can
get lost or stolen. However, this does not make the system secure. More specifically, if
person A manages to physically access any device of person B, he/she can use it to
launch and interact with any application on B’s computer, i.e. gains access to the entire
system of B including all resources owned by B; as well as resources of person C to
which access was (temporarily) granted to B.

This is a problem, but it seems unavoidable and there is a possible solution: The
user may wear a small device that periodically sends out encrypted beacons with his/her
id and a sequence number. The devices owned by the user would listen for such con-
secutive beacons and shutdown as soon as they stop receiving them. For more flexibil-
ity, the user can configure some devices to remain operational even if they do not
receive these beacons; for instance, devices that are located somewhere safe (home,
office, etc).

Note that this idea forces the user to wear a device at all times (as long as he/she
wishes to use the computer). And then, this device may be lost or stolen too; or just
break. Therefore, this is not a real fix, but a workaround.

There is another, more or less orthogonal, solution. Programs which are used via
certain portable devices are allowed to access only a few non-critical resources. A

11 -

program receives full access only if it is used via distinguished devices, assumed to be
located in a safe environment. One could also use any device to run a special authenti-
cation program that, if successful, issues privileged capabilities that temporarily allow
programs used via this device to access protected system resources. Notably, this
means that access control in made context-dependent. It would depend on which
devices are being used to interact with, and provide input to, this program. This
requires refining the access control scheme introduced previously.

7. Problems and Scenarios

7.1. Application test bed: Player

To test the system ideas and be honest to the real world, we focus on how to pro-
vide services for a particular and concrete application, a music player.

The player program runs at the computer, and uses available devices to perform its
job. In particular, songs can be selected from storage volumes for music files. The sys-
tem should be responsible for locating such volumes and making them available to the
player. A set of controls permits the user to drive the program. These controls can be
replicated and/or moved around different Ul services, like in omero.

Besides, the player must be able to use available screen space to display the poster
of the CD, or any image related to the music being played. The same can be applied to
the lirics.

Regarding audio output, the player must use an appropriate audio device to stream
the data for its reproduction. It is important to note that the connection between the
music storage volume and the audio output device may differ in quality from that
between these devices and the computer. Therefore, bandwidth and latency must the
considered precious.

Once started, the user must be able to quickly locate and display the player inter-
face, perhaps at a different screen. Also, the audio output device might change during
the execution time for the player.

Music volumes may come and go. Therefore, the selection of available music is
subject to change as well. And the same applies to any other resources used by the
player. The only constant is the single computer used to run all the software.

7.2. One interface does not fit all.

The user may employ widely different Ul devices to interact with the application.
When started for the first time, the application passes to the central Ul service running
at the computer the whole, full-fledged, Ul structure. Afterwards, the user can emply the
system interface to trim, adjust, copy, and/or replicate the application’s Ul structure to
fit different (expected) usage scenarios that involve a variety of devices.

7.3. Dynamic User Interfaces.

The player application may need different interfaces depending on its execution
stage (e.g., to select songs, to select output, and to control the player). Properly staging
the user interface of an application (rather than trying to instantiate it "all at once") is
particularly important when there are few Ul resources available. This can be achieved
by letting an application explicitly issue different Ul structures to the system, depending
on its (internal) state, at runtime.

It is important to keep in mind that one very important state is when the applica-
tion does not require any Ul resources at all, and can happily work in the background.

-12 -

7.4. Distributing Ul resources.

What makes things complex is that we may have many concurrently running appli-

cations and many different devices providing many different Ul resources, and that
some Ul resources may be able to be used concurrently by different applications (e.g.
big display that can be subdivided into several separate sub-displays, which is practi-
cally what happens on a desktop environment).

Note that we have a problem for both the cases of resource scarcity (which applica-

tions should be given priority over others?) as well as resource abundance (which are the
best Ul resources for each application?). Both problems require the system to provide a
mechanism that would let users employ different policies, perhaps by scripting.

References

1.

F.). Ballesteros, G. G. Muzquiz, E. Soriano and K. L. Algara, Traditional Systems can
Work Well for Pervasive Applications. A Case Study: Plan 9 from Bell Labs Becomes
Ubiquitous., Percom, 2005.

F. J. Ballesteros, G. Guardiola, K. L. Algara and E. S. Salvador, Omero: Ubiquitous
User Interfaces in the Plan B Operating System, Proceedings of IEEE PerCom. Also at
http://Isub.org., 2006.

F. J. Ballesteros, E. S. Salvador, K. L. Algara and G. Guardiola, Plan B: An Operating
System for Ubiquitous Computing Environments, Proceedings of IEEE PerCom. Also
at http://Isub.org., 2006.

S. Ghemawat, H. Gobioff and S. Leung, The Google File System, 19th ACM Sympo-
sium on Operating Systems Principles, 2003.

A. Karypidis and S. Lalis, OmniStore: A System for Ubiquitous Personal Storage
Management, Proceedings of the 4th IEEE PerCom., 2006.

R. Pike, D. Presotto, K. Thompson and H. Trickey, Plan 9 from Bell Labs, EUUG
Newsletter 10, 3 (Autumn 1990), 2-11.

S. Quinlan and S. Dorward, Venti: a new approach to archival storage, in First
USENIX conference on File and Storage Technologies, Monterey,CA, .

E. S. Salvador, F. J. Ballesteros, K. L. Algara and G. Guardiola, A Human Centered
Security Protocol for Ubiquitous Environments, Submitted for publication. Also at
http://Isub.org., 2004.

A. Vahdat, T. Anderson, M. Dahlin, D. Culler, E. Belani, P. Eastham and C. Yoshi-

kawa, WebOS: Operating System Services For Wide Area Applications, Proceedings
of the 7th HPDC., 1998.

