NIX is a novel OS designed for current manycore machines, which includes mechanisms to assign different roles to heterogeneous cores. NIX includes a NUMA-aware memory allocator suited for new 64-bit x86 processors. The inherent flexibility for specializing cores of NIX makes it particularly suitable for the future heterogeneous multi-core chips. The core roles available in NIX are:

- **Time-sharing Core (TC):** a common core running kernel and user code in a time sharing fashion.
- **Application Core (AC):** a core running user code without any interrupt (even without clock interrupts)
- **Kernel Core (KC):** a core that only runs kernel code on demand. The cores communicate by sending active messages that include a function to be executed, together with its arguments.

Work in progress:

- **Role assignment to cores:** adding new core roles (e.g. XC), evaluation of core roles for different computing environments, automatic core provisioning and role assignment.
- **Scheduling:** quantitative evaluation of different scheduling policies (SMP, AMP, ACPI's proximity domain aware schedulers, etc.) for manycore machines.
- **Zero-copy:** design of a simple zero-copy I/O framework to avoid unnecessary data copies within data paths.

Early results

Benchmark: Build the NIX kernel (compile and link around 100 C and assembler source files in parallel) using a RAM disk. The figures show the time of 50 executions of the benchmark for different numbers of operational cores.

Machine: 32-core AMD K10 magny cours, 64 GB RAM.

![Figure 1](image1.png) **Figure 1:** Results for an experiment comparing an AMP scheduler that selects cores according to the ACPI's proximity domain (amp) vs. an AMP scheduler that looks first for cores from a different ACPI's domain (ampbadcol).

![Figure 2](image2.png) **Figure 2:** Results for an experiment comparing a SMP scheduler using memory from all ACPI's domains (smp), a SMP scheduler with all memory in ACPI's proximity domain zero (smpcol0), and the previous AMP scheduler (amp).

![Figure 3](image3.png) **Figure 3:** Results for an experiment comparing the previous AMP scheduler (amp) vs. an AMP scheduler with all the memory in ACPI's proximity domain zero (ampcol0).