
UbiTerm: A hand-held control-center
for user’s activity mobility

Katia Leal, Francisco Ballesteros, Enrique Soriano, Gorka Guardiola
Laboratorio de Sistemas, Universidad Rey Juan Carlos

C/Tulipán SN, Mósteles, Madrid, Spain.
{kleal, nemo, esoriano, paurea}@lsub.org

Abstract

Current approaches handling user’s activity mobility ad-
dress the problem by imposing system decisions instead of
user’s indications in an attempt to reduce user’s distrac-
tion. At the same time, these traditional approaches intro-
duce uniformity on the environment, thus preventing users
to take full advantage of the computational resources found
nearby. We describe an alternative architectural model that
better solves the problem of supporting user’s mobility, re-
ducing user’s distraction, and respecting user’s preferences.
One of the key features of our solution is that users can di-
rectly control their activities. Thus, the Plan B’s Ubiquitous
Terminal (UbiTerm) provides activity control commands to
users. In addition, to take appropriate actions when adapt-
ing the environment to user needs, the UbiTerm uses a con-
text information mechanism. Finally, by using a program-
mable service for the remote execution of applications, the
architecture can exploit local capabilities, provide support
in different platforms, and fit activities to user’s preferences.

1. Introduction

One of the most important issues introduced by ubiqui-
tous computing [28] is to support user’s mobility, and so
user’s activity mobility. The ideal architecture model would
exploit local capabilities, provide support in different plat-
forms, and fit activities to user’s preferences. Moreover,
it would support user’s mobility reducing to the minimum
user’s distraction, and respecting user’s preferences to the
maximum.

We have classified current approaches to user mobility in
three different technologies, none of which fully achieves
the goals pointed out. First, we have mobile solutions. Basi-
cally, these techniques consist in carrying user’s data, and
possibly computing, on a mobile device. A second ap-

proach are server-based architectures that place computing
and storage on a network of servers. A third approach con-
sists in middleware infrastructures to support active or smart
spaces. In this schema standard applications are ported or
wrapped to conform a particular middleware, and installed
in all spaces.

At least there are two problems with these solutions. One
is that they impose uniformity on the environment, so users
can not take full advantage of the computational resources
found nearby. The second is that even though some of these
approaches have included abstractions representing the ac-
tivity of the user in an ubiquitous environment, they do not
provide users with the possibility of controlling those ab-
stractions. Instead, in some cases they infer user’s inten-
tions in order to transfer user’s activities to the right place.
In other cases, the image of the activity of a user is migrated
as soon as the user arrives at the new location. As a result,
user’s activity mobility follows system decisions instead of
user’s indications.

The approach we propose is to place control at the user,
with a centralized implementation that governs the behav-
iour of the pervasive environment. Thus, user’s activity mo-
bility obeys user’s directives instead of system decisions.
The key features of the architecture we propose are the fol-
lowing: first, it provides activity control commands to users.
Second, the activity abstraction represents a generic human
action, so it is not tied to a particular application or system.
Third, the use of a context information mechanism permits
to take appropriate actions when adapting the environment
to user needs. Forth, a programmable service for the remote
execution of applications in different platforms allows users
to exploit environment resources. Moreover, the combined
use of the context information mechanism, and the remote
execution service, permits us to deal with heterogeneous en-
vironments.

In this paper we will see that our architecture has several
advantages. By providing a unique point from which to con-
trol all the user activities, users gain the domain of the sys-



tem without being forced to make configuration tasks. By
representing user’s activities as generic human actions, the
architecture can identify several applications implementing
those actions, thus providing support across different plat-
forms. The architecture can also notify the user that is not
possible to support the activity. By using a context informa-
tion mechanism the environment information is always up
to date, so the architecture can accommodate to dynamically
changing resources. With this environment information the
architecture can decide if it is possible or not to provide a
configuration capable to support the activity. In addition, it
can search for the configuration that better matches user’s
preferences. Finally, by using a programmable service for
the remote execution of applications, the architecture can
exploit local capabilities, provide support in different plat-
forms, and fit activities to user’s preferences.

The rest of the article is organized as follows. Section 2
illustrates how the UbiTerm architecture works using an sce-
nario in which an activity follows its user to a new location.
In Section 3 we describe the proposed architecture. Sec-
tion 4 explains the Plan B’s Ubiquitous Terminal structure.
Related work is discussed in Section 5. Section 6 presents
some conclusions, and the plans for future work.

2. How does the UbiTerm Architecture work?

To illustrate how the UbiTerm architecture achieves its
goal of supporting user’s activity mobility, we describe a
simple scenario of an activity following its user to his cur-
rent location. We will focus on the interactions among the
components forming the UbiTerm architecture that we de-
scribe in Section 3.

Let’s consider the following scenario. Katia is located
at Quique’s office, and has Quique’s (verbal) permission to
use his devices. In 10 minutes there is a talk at Quique’s
office, and Katia has to present it. In the last moment Katia
remembers that she was working in the presentation before
she left her office. If she wants to continue that activity at
Quique’s office, because she is new in the current environ-
ment she will be forced to do a lot of configuration work:
enter the system (which one?), find the corresponding ap-
plication that edits the file format, and possibly to move the
(file) presentation to the current system.

Now, look at the figure 1. In this case Katia carries her
mobile phone which is at the same time her UbiTerm. When
Katia enters Quique’s office she asks for permission to him.
Then, their UbiTerms exchange information to establish the
corresponding permission level based on human trust[22].
As you can see, none of them have to make configuration or
administration tasks such as the one that consists in creating
a new user for Katia in the different systems at Quique’s
office.

Figure 1. Katia‘s UbiTerm adapts her activities to Quique’s
office resources.

Next, when Katia remembers that she has not already
finished the presentation, she asks her UbiTerm to move
her ‘presentation’ activity to the current location. As we
will see, to facilitate the interaction with the UbiTerm, this
will be provided with different modules supporting typed
commands, voice and gesture. This activity is within the
UbiTerm because it was created when Katia was at her of-
fice. Instead of asking explicitly for a concrete applica-
tion for editing presentations, Katia asked for the human ac-
tion. Thus, her UbiTerm used an activity-binary(system) ta-
ble that translated the activity into its corresponding binary
or binaries. For example, this ‘presentation’ activity entry
produced the following list: Open Office Impress(Linux),
Power Point(XP), Power Point(Mac). Once the UbiTerm
knew the possible binary-system combinations he had to
look for a Remote Execution Service providing one of those
binaries. Thus, Katia’s UbiTerm used the Context Informa-
tion Mechanism to look for a Remote Execution Service lo-
cated in the same place as Katia was. Also, the UbiTerm
could also have looked simply for a Remote Execution Ser-
vice providing that binary, and have programmed it to use
available I/O resources at Katia’s office. Katia (who) pro-
vided her current location (where) to her UbiTerm, for ex-
ample, office 127 . Thus, the UbiTerm used the Context In-
formation Mechanism to consult available resources (what)
at office 127. In addition, if it was possible the UbiTerm
used the favourite I/O devices for Katia to operate the appli-
cation.

Now, the UbiTerm has to reproduce the ‘presentation’ ac-
tivity with Quique’s office resources. At least, the UbiTerm
can do it in two different ways. First, it can use activity
current Remote Execution Service to change the set of I/O



resources of the running application. Second, it can also
use activity current Remote Execution Service to close the
running application, and look for another Remote Execution
Service providing the binary at Katia’s current location. In
order to decide what to do, the UbiTerm considers different
aspects, such as performance. As a result, instead of moving
back to her office to finish the presentation, Katia tells her
UbiTerm to move the presentation to her current location.
Once the activity is running in the new space, Katia can for-
get her UbiTerm till the moment she needs to control again
her activities.

3. Plan B’s Ubiquitous Terminal

The Plan B’s Ubiquitous Terminal idea comes up out
of the necessities of helping users to perform tasks ubiqui-
tously, but satisfying two important issues. First, reduce to
the minimum user’s distraction. Moreover, while users are
performing their activities they do not have to be disturbed,
forgetting about their UbiTerms till the moment they need
to control again their activities. Second, user’s preferences
have to be respected to the maximum. Furthermore, the en-
vironment heterogeneity do not have to be a problem when
exploiting available resources.

In a pervasive environment there are many different ways
of disturbing users. For example, by forcing them to make
configuration or administration tasks when they manage
computing resources in a new environment or because the
resources change. To reduce this kind of user’s distraction,
almost all available approaches try to infer user’s intentions
in order to transfer user’s activities to the right place. How-
ever, if the system fails in its predictions the solution will
become the problem. Because we do not act always in
the same way, the system will take wrong decisions many
times, thus introducing more distractions to the user than it
is trying to avoid. Our solution reduces user’s distraction by
using a context information mechanism to obtain informa-
tion about the environment, so our architecture can accom-
modate to dynamically changing resources without forcing
users to make configuration or administration tasks. In ad-
dition, in our solution is the user the one who decides what
to do with every activity, when, and where. Although we
introduce some degree of distraction to the user because of
controlling activities, it is minimal. As a result, user’s activ-
ity mobility follows user’s indications, and not system deci-
sions.

In the Systems Lab at Rey Juan Carlos University we are
working in a solution to this problem based on the UbiTerm
(Ubiquitous Terminal). The idea is integrate the tiny pro-
gram implementing the UbiTerm in a mobile device (eg.
a programmable mobile phone) users carry with them, so
the UbiTerm is always available. However, we have to say

Figure 2. Plan B’s Ubiquitous Terminal’s Architecture
Components.

that the UbiTerm is just a control device, not a server. In
fact, the UbiTerm is like a terminal in the sense that it pro-
vides commands to permit users control their activities: cre-
ate, start, stop, kill... To facilitate the interaction with the
UbiTerm, this will be provided with different modules sup-
porting typed commands, voice, or gesture. When a user
wants to perform an activity, instead of asking explicitly for
a concrete application, he asks for the human action.

The UbiTerm uses an activity-binary-system table that
translates every activity into its corresponding binary or bi-
naries. For example, a ‘navigate’ activity entry will produce
the following list: mozilla-Linux, firefox-XP, links-Plan 9.
Once the UbiTerm knows the possible binary-system com-
binations it has to look for a remote execution facility (/cmd
[1] in Plan B) providing such a binary. So, the UbiTerm uses
the context information mechanism [10] to look for a remote
execution service providing that binary, and programs it to
use available I/O resources in the current location according
to user’s preferences.

Once the activity is in the UbiTerm, the user can con-
trol it using the set of commands provided by the UbiTerm.
Thus, when the user moves to a different location, he can
ask the UbiTerm to move an activity to the current location.
In this case, the UbiTerm reproduces the activity with cur-
rent available resources. Again, the UbiTerm uses the re-
mote execution service to change the set of I/O resources of
the running application; It can also use the remote execution
service to close the application; Next it can look for another
remote execution service providing the binary at user’s cur-
rent location. The UbiTerm considers different aspects, such
as performance, in order to decide what to do. Once the ac-
tivity is running in the new space, the user can forget the
UbiTerm till the moment he needs to control again his activ-
ities.

The UbiTerm is part of an operating system that provides



the context information mechanism, and the remote applica-
tion execution service. This new research operating system
that we built is named Plan B [3]. You can also refer to [5]
both for a description of Plan B and to see how we have in-
corporated its mechanisms into Plan 9 [17] to get a system
that adapts to changes.

As we can see in figure 2 there are four components
types in the UbiTerm architecture. The Mobile-UbiTerm
provides the front-end for the user to control the activities,
and for the system to reach the user. Second, the Engine-
UbiTerm embodies the politics to solve Mobile-UbiTerm re-
quests (user’s activity commands). These two components
form the UbiTerm. Third, the Context Information Mech-
anism provides information on the physical context (who,
what, where). Fourth, the Remote Execution Services em-
body a programmable service for the remote execution of
applications in different platforms. Although we have in-
cluded the Context Information and the Remote Execution
as components of the UbiTerm architecture, they are Plan
B’s mechanisms that provide a generic interface to the whole
system. So, they are separate components and can form
part of different architectures. An environment has one in-
stance of each of the types: UbiTerm and Context Informa-
tion Mechanism. Also, each environment may have several
Remote Execution Services.

Although information about the user (eg. the current
location, the preferred audio output device, etc.) is kept
centralized within the UbiTerm, such information may be
cached within the distributed system to tolerate disconnec-
tions of the UbiTerm. As it is centralized it becomes easy
to operate on that information within the UbiTerm. Another
consequence is that when some component or program of
the distributed system wants to know something about the
user, there is a centralized place where to look at—and the
user retains control on that information.

3.1. User activities

The UbiTerm introduces a new abstraction to represent
the human action that the user is performing in the system.
We use the name Activity for such abstraction. Although
the activity abstraction is kept within the UbiTerm, the idea
is that the processing and the set of I/O devices to operate
the activity are not in the UbiTerm, but in the surrounding
environment. For example, the UbiTerm will contain an ac-
tivity ‘Listen to X’ as soon as the user starts to reproduce
it. However, the player will run at a computer found in the
environment, and the I/O devices will come from the envi-
ronment too.

Continuing the example, when the user requests the
player to stop, the request is made to the UbiTerm activ-
ity. If the UbiTerm is disconnected from the system, it will
wait upon reconnection to connect to the player and request

Figure 3. Our context hierarchy. Used to update and to use
context information.

it to stop. Finally, when the user is back at the office, he
will have another set of speakers. Assuming the activity was
resumed or never stopped, the UbiTerm will connect to the
computer running the player and instruct it to use the appro-
priate audio output device.

To facilitate management of activities, we also include a
Session abstraction. We have used the term session because
we think it matches well with its functionality, but it is not a
session in the traditional sense. Our session is simply a tag
that permits the user to group activities according to some
criteria only meaningful to the user. For example, one user
can create a session ’work’, and a session ’home’ to group
activities created while at home or at work. But another user
might create sessions project’ and ’documentation’ to group
activities according to the kind of work. One of the ses-
sions is considered “current”, and all the activities created
are tagged for that session. The user can add more tags (i.e.
attach the activity to more than one session) if it’s desired.

If the UbiTerm state is lost, due to a device crash, it will
learn of already started activities as they are seen in the net-
work. Thus the UbiTerm state is, to some extent, recover-
able. Although a crash of the UbiTerm can be very inconve-
nient for our users.

3.2. Context Information Mechanism

The context-awareness “framework” we use is simply a
set of directories. Our main file server includes a series of
directories where context information is to be placed, so that
no other file system needs to be mounted to access context.
Nevertheless, we also have small file systems to keep con-
text for mobile devices and people. They are similar to ram
based file systems used for temporary storage. Such file sys-
tems are handy while outside of our smart space; i.e., while
disconnected at home or while we are in the subway.

Figure 3 shows a typical context hierarchy. Users have
a directory (one for each user) for their relevant context
information. Each piece of context for a user is repre-
sented by a file in its context directory. For example,
/who/user/where is a file that contains the last known



location for user, and status is a file that contains a de-
scriptive string about the user status (eg. busy or idle).
Each place has also a directory that contains its context in-
formation. As examples of context information for places
we can mention the file who, which contains one line per
user known to be at the space, and also visit, which con-
tains either yes or no depending on the answer to“Are there
humans present in the space other than its owner(s)?” Fi-
nally, things (including devices and services) also have their
own context directory. For example, the context directory
for an audio device includes a owner file containing the
device’s owner; there is also a volume file containing the
device output volume level desired by the owner.

The context information stored is not assumed to be ac-
curate, it is as accurate as the tools used to extract it from
somewhere else in the system. The set of tools used to ex-
tract, merge, and use context information is still growing. It
includes tiny shell scripts as well as more complex C pro-
grams. It is important to note how we can also use simple
programs like the UNIX echo or the Windows Notepad to
update our context information or to turn off the lights.

Users and space administrators are free to run whichever
tools they see that fit to extract and use context. The dif-
ferent tools work together using the file system to exchange
information. This works very much like the UNIX environ-
ment did time ago, by combining simple programs to per-
form complex tasks. Therefore, we do not have to use one
solution for all the problems, and users can customize how
the system extracts and uses context on their behalf.

3.3. Remote Execution Service

To let the UbiTerm control the programs and devices dis-
tributed in the environment, it needs some kind of interface
to operate on them. In Plan B we have a remote execution
facility, /cmd [1], that allows us to start remote programs
and to dictate which I/O devices must be used by those pro-
grams at any time. Programs may be started with a fixed
set of I/O devices (and their I/O will not follow the user),
or they may be started with a dynamic set of I/O devices to
follow the user. The description of this service is beyond the
scope of this paper, because here we focuss on how to ap-
ply the UbiTerm both for our system and for traditional ones
like Windows, UNIX, Plan 9, or Symbian.

To use the UbiTerm with other systems, we need a re-
mote execution interface for those systems if we want the
UbiTerm to start programs on them. Fortunately, such ser-
vice is usually available on most systems, and can be easily
built otherwise. However, we also need a way to plug the ap-
propriate I/O devices to those programs. Such devices and
the programs using them may reside at different machines.

What we do is to export devices as files, and provide re-
mote access for such files, borrowing the idea from the Plan

9 Operating System [17]. Distributed access to files is a
well-known technique, and it allows the programs we start
to operate on remote devices.

By using Plan 9 for daily work and by experimenting
with our research prototype, we have gained experience
with this approach. By carefully choosing how to model
resources as files, access to devices and resources can be
even more simple than using other approaches like distrib-
uted object systems [6] or approaches like Ninja[9]. For ex-
ample, our X10 service [4] for motion detectors and power
switches, which is also exported through the web [1], uses
files to represent each sensor and each power switch. A sim-
ple write of “on” or “off” can set a switch to the desired
state. A simple read can let a program know the status of a
switch or a motion detector.

At first sight, it may be argued that the lack of a type sys-
tem would be a problem for this approach, but experience
says it is not. For simple interfaces, a write of an incorrect
request for a device would usually return an error for the
write operation (“bad control request”). Complex interfaces
do not use a single file, but a hierarchy that can include sev-
eral directories. We have found that what is important is to
carefully chose which files to service, and what do they rep-
resent. As a more complex example, the graphical user inter-
face service of Plan b uses a hierarchy of files to represent a
hierarchy of graphical components like buttons, menus, etc.,
as said in [1].

Using files to access devices makes issues like au-
thentication, access control, concurrent access, and
communication to become mostly solved. The part that
must be addressed is how to employ a dynamic scheme
suitable for multiple file clients and servers that might not
share an authentication service. We discuss elsewhere [22]
how we address this issue.

As a final remark, this approach is very portable and
makes it easy to interoperate with most systems. All that
is required for a system to export a service is a little server
program to export the device considered as if it were a set of
files. And this program can be really tiny, as demonstrated
by the server used to export the sensors and actuators from
a Lego Mindstorm Brick [15]. We are using BP [1] and 9P
[16] as the file system protocol, but any other could work.
Since most devices know how to exchange or remotely ac-
cess files, things get even easier1.

1Note that the same set of (virtual) files can be exported through dif-
ferent protocols at the same time. For example, a Nokia 6600 may use
bluetooth to share a file to export its keypad, and at the same export the file
using 9P on a TCP stream.



Figure 4. Ubiquitous Terminal’s Structure.

4. UbiTerm Structure

The UbiTerm has two different conceptual modules as
seen in figure 4:

r User Interface: for the user of the UbiTerm to com-
mand the system.

r System Interface: for the system used by the user to
reach the user.

The user can control the system through the User Inter-
face. In response, the UbiTerm would use modules from
the system interface to perform the appropriate actions. In a
similar way, the System Interface provides user information
to the rest system, and it uses the user interface when help
from the user is necessary. Both interfaces are built out of
different modules, as depicted in the figure 4.

Multiple modules in the user interface allow for differ-
ent methods, like typed commands, voice, or gesture. This
does not mean that the processing (eg. voice recognition)
must be made within the UbiTerm, the module could arrange
for a program running at a nearby machine to perform the
processing. The two other modules in the user interface,
Activities and Sessions, implement the corresponding ab-
stractions.

The modules in the system interface are there mostly to
provide information for the rest of the system, and there is
usually one module for each kind of that information.

The UbiTerm establishes a control relationship among
the different resources and programs participating in a given
activity. Data paths go only between the application and the
devices. The UbiTerm interferes in such relationship only
because of dynamic or due to a user specified action on the
activity. Decisions and requests made by the user while the

UbiTerm is disconnected are not lost, they are kept within
the UbiTerm so that the user could forget about them.

Regarding the policies involved, like where to execute
a program, we follow simple ones. They can evolve once
experience is gained with the UbiTerm. For example, in our
current architecture, the UbiTerm would try to execute an
application on the first machine known by it that has the
requested program and is willing to execute it. If the user
wants a particular machine to execute such program, he can
select the machine in the UbiTerm for the occasion.

4.1. User Interface Layer

The User Interface is the shell for the user to control the
system. It has a set of modules that, for the moment, con-
sider this functionality:

À User’s activities: list of user’s activities for the current
session.

Á User’s sessions: list of user’s sessions.

Â Commands for activities and sessions: the UbiTerm in-
cludes a set of controls for all the above.

Activities and sessions can be operated like a telephone di-
rectory in a mobile phone. The user may navigate the list
of sessions, select one, and reach the list of activities for the
session. Then select an activity and delete it.

However, to make it more convenient to use, we consider
other input modules including voice commands, and ges-
ture modules. The set of commands to be recognized by the
voice recognition module depend on the part of the UbiTerm
being navigated, and it may be feasible to perform the recog-
nition even within the UbiTerm device.

Finally, we must remember that for applications started,
the UbiTerm controls which I/O devices they should use, but
data paths go from the devices to the applications without
passing through the UbiTerm. This means that while the
user maintains a given location, a more convenient set of
I/O devices can be used.

4.2. System Interface Layer

The UbiTerm establishes connections among the differ-
ent elements participating in a specific activity, that is, the
UbiTerm builds a network between programs and I/O de-
vices as figure 5 shows, so that activity evolution is inde-
pendent form UbiTerm, and vice versa.

As you can see in figure 5, when the UbiTerm needs to
create or control activities, it uses the /cmd service if us-
ing Plan B, but might use another remote execution service



Figure 5. The UbiTerm builds a command network.

otherwise. When not using the rest of our system, the re-
mote execution service must provide some means to con-
trol remotely which “files” (ie. devices) are used by a pro-
gram. For example, when using Plan 9, we provide means
to remotely mount a given set of files for a particular pro-
gram at a specified place. The next time the program uses
(opens) those files, it would be using the new device. On
other systems like UNIX or Windows, this can be done by
placing a proxy file system between the application and its
files (which would achieve the same effect), or by interpos-
ing a dynamic library that intercepts calls for files whose
names we know that refer to devices that we may want to
redirect.

The System Interface provides the following services:

À I/O device settings: list of user’s preferred I/O devices.

Á User tickets and ids: users obtain tickets that latter
will be required to let the UbiTerm authenticate to re-
sources, and to authenticate other programs to access
the user’s resources, as said elsewhere [22].

Â User location: the system usually needs to know the
user location, the UbiTerm keeps such information
since it’s a computing resource located by convention
at the user. If the UbiTerm is attached to the internet,
all the activities know how to reach the UbiTerm; If it
is not, the UbiTerm has to update its caches through
the rest of the system. (There is one per machine with
commands running on behalf of the user).

As you can see, the UbiTerm centralizes critical user in-
formation, which does not have to be necessarily bad. In
fact, having a single node centralizing control data and al-
gorithms that would be hard to distribute, vastly simplifies
our design and enables users to dispose of the information
to interact with the system at any moment. We took the idea

from the Google File System [8], that maintains centralized
control for its distributed data.

5. Related Work

Mobile solutions consist in carrying user’s data, and pos-
sibly computing, on a mobile device. Among these, the Per-
sonal Server [26] is closer to our approach in that it uses
external-computing elements and does not need to be con-
nected all the time. However, every time users move be-
tween locations they have to predict what data they will need
to store it before leaving. This last one is not convenient
when you are only planning to move to the next office. In ad-
dition, the use of external-computing elements is restricted
to a host infrastructure using Windows XP, and to the set
of I/O devices attached to that host. In general, these solu-
tions impose uniformity, so users can not take full advantage
of local available resources. In contrast, with the UbiTerm
users do not need to store anything, and can deal with het-
erogeneous environments. Thus, the UbiTerm respects to
some degree user’s preferences.

Personal servers, running at phones and PDAs, suffer
from the inherent difficulty of accessing data through small
displays. Some systems try to overcome these limitations,
see for example mLinks [21] and gestures for mobile de-
vices [18]. The UbiTerm differs in that it is designed to
control the set of external computing elements found in the
network, but it is just a control device, not a server.

CAFE [13] permits aggregation of devices to perform
tasks on behalf of the user. The main difference between
the UbiTerm and such systems is that we do not require the
devices and applications to be programmed with any par-
ticular middleware or component technology. Moreover, we
do not assume that devices will be always connected through
an homogeneous (wireless) network and CAFE seems to do
so.

Systems like InfoPad [25], ParcTab [27], VNC [14], and
Roma [24] are server-based architectures that place comput-
ing and storage resources on a network of servers. Again,
these client-server approaches impose uniformity on the en-
vironment. Thus, they restring users to use the set of I/O
devices attached to the host-platform capable of running
the client-side. Moreover, for such systems it is critical to
have good bandwidth and network connectivity between the
clients and the servers. Our work is different in that the
UbiTerm can still continue working if its network connec-
tion for the user is temporally unavailable or low-bandwidth;
The user is still enabled to command the UbiTerm.

There are many middleware infrastructures to support ac-
tive or smart spaces, like Centaurus [11], the Interactive
Workspaces Project [2], Gaia’s Active Spaces [19, 12], and
Aura [20]. In these schemas standard applications are ported



or wrapped to conform a particular middleware, and in-
stalled in all spaces. We differ in that our system does not
require the controlled applications to use any particular mid-
dleware. Moreover, the action of the UbiTerm is not limited
to the smart space where the controlled applications are be-
ing deployed. Although the work done in [7, 23] have in-
cluded abstractions representing the activity of the user in an
ubiquitous environment, they do not provide users with the
possibility of controlling those abstractions. Instead, they
impose system decisions to user’s indications when mov-
ing user’s activities. Unlike them, our main goal is provide
always control to users. Thus, with the UbiTerm user’s ac-
tivity mobility obeys user’s directives instead of system de-
cisions.

6. Conclusions and Future Work

We have described an architecture that solves two prob-
lems that arise when supporting user mobility. First, we pro-
vide a tool that permits users indicate control actions over
their activities, while reducing user’s distraction to the min-
imum. Thus, user’s activity mobility follows user’s indica-
tions instead of system decisions like in other approaches.
Second, the combined use of a context information mecha-
nism, and a remote execution service, allows to respect in
some degree user’s preferences when adapting on-going ac-
tivities to changes in the physical environment. Moreover,
we can exploit available resources in heterogeneous envi-
ronments without imposing uniformity.

We are currently working on the second edition of our
system, and have also modified a Plan 9[17] system to in-
clude most of the services that our system provides. This in-
cludes our remote execution service /cmd, and the context
information mechanism. A prototype of UbiTerm is being
built. In the near future we will be integrating more devices
and services into our system, so that it could be used for our
daily work to gain experience from the user’s perspective.

References

[1] Plan B User’s Manual Second Edition. http://lsub.org.
[2] Stanford, Interactive Workspaces Project.

http://graphics.stanford.edu/projects/iwork/.
[3] F. Ballesteros, G. Guardiola, K. Leal, E. Soriano, P. de las

Heras, E. M. Castro, and S. Arévalo. “Plan B: Boxes for
network resources”. Journal of the Brazilian Computer So-
ciety, special issue on Adaptive Software Systems, 10(1):31–
42, July 2004.

[4] F. Ballesteros, G. Guardiola, E. Soriano, and K. Leal. “Tra-
ditional Systems can Work Well for Pervasive Applications.
A Case Study: Plan 9 from Bell Labs Becomes Ubiquitous”.
In PerCom, 3th IEEE International Conference on Pervasive
Computing and Communications, pages 295–299, Kauai Is-
land, Hawaii, USA, 8-12 March 2005.

[5] F. J. Ballesteros, K. Leal, G. Guardiola, and E. Soriano. “The
Design and Implementation of Plan B 3rd edition. A dynamic
distributed computing environment”. GSYC Technical Re-
port 2004-05, Grupo de Sistemas y Comunicaciones, Uni-
versidad Rey Juan Carlos, 2004.

[6] J. Bresler, J. Al-Muhtadi, and R. Campbell. “Gaia mobil-
ity:extending active space boundaries to everyday devices”.
In 24th International Conference on Distributed Comput-
ing Systems Workshops, 2004, volume 23, pages 430–433,
March 2004.

[7] D. Carvalho, R. Campbell, G. Belford, and D. Mickunas.
“Definition of a User Environment in a Ubiquitous System”.
In R. M. et al., editor, CoopIS/DOA/ODBASE 2003, volume
LNCS 2888, pages 1151–1169. Springer-Verlag, 2003.

[8] S. Ghemawat, H. Gobioff, and S.-T. Leung. ”The Google
File System”. In 19th ACM Symposium on Operating Sys-
tems Principles, October 2003.

[9] S. D. Gribble, M. Welsh, R. Behren, E. A. Brewer, D. E.
Culler, N. Borisov, S. E. Czerwinski, R. Gummadi, J. R.
Hill, A. D. Joseph, R. H. Katz, Z. M. Mao, S. Ross, and
B. Y. Zhao. “The ninja architecture for robust Internetscale
systems and services”. Computer Networks. Special issue on
Pervasive Computing, (35), 2000.

[10] G. Guardiola. “CUROCO: a distributed architecture for
the dynamic generation, composition, and use of context in
highly dynamic and heterogeneous environments”. In 1st
Middleware Doctoral Symposium, pages 287–289, Toronto,
Ontario, Canada, October 2004.

[11] L. Kagal, V. Korolev, S. Avancha, A. Joshi, T. Finin, and
Y. Yesha. “Centaurus: A Infrastructure for Service Man-
agement in Ubiquitous Computing Environments”. Wireless
Networks, 8:619–635, 2002.

[12] F. Kon, C. Hess, M. Roman, R. Campbell, and M. Mickuna.
“A Flexible, Interoperable Framework for Active Spaces”.
In OOPSLA 2000 Workshop on Pervasive Computing, Min-
neapolis, October 2000.

[13] R. Kumar, V. Poladian, V. Poladian, A. Messer, and
A. Messer. “Selecting Devices for Aggregation”. In Fifth
IEEE Workshop on Mobile Computing Systems & Applica-
tions, 2003.

[14] S. F. Li, M. Spireti, J. Bates, and A. Hopper. “Capturing and
Indexing Computer-based Activities With Virtual Network
Computing”. In Proceedings of the 2000 ACM Symposium
on Applied Computing, volume 2, pages 601–603, Como,
Italy, March 2000.

[15] C. Locke. “Styx-on-a-Brick”. In
http://www.vitanuova.com/mkt/press/Styx-on-a-brick.pdf.

[16] P. . U. Manual. 9p. AT&T Bell Laboratories, Murray Hill,
NJ, 1995.

[17] R. Pike, D. Presotto, K. Thompson, and H. Trickey. “Plan
9 from Bell Labs”. EUUG Newsletter, 10(3):2–11, Autumn
1990.

[18] A. Pirhonnen and S. Brewster. “Gestural and Audio
Metaphors as a Means of Control for Mobile Devices”. In
Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, April 2002.

[19] M. Roman and R. Campbell. “Gaia: Enabling Active
Spaces”. In 9th ACM SIGOPS European Workshop, Kold-
ing, Denmark, September 2000.



[20] M. Satyanarayanan. “Pervasive Ccomputing: Vision and
Challenges”. IEEE Personal Communications, 8(4):10–17,
August 2001.

[21] B. Schilit, J. Trevor, D. Hilbert, and T. Koh. “m-Links: An
Infrastructure for Very Small Internet Devices”. In Proceed-
ings of the 7th Annual International Conference on Mobile
Computing and Networking (MOBICOM), July 2001.

[22] E. Soriano. “SHAD: A Human Centered Security Archi-
tecture for Partitionable, Dynamic and Heterogeneous Dis-
tributed Systems”. In 1st Middleware Doctoral Symposium,
pages 294–298, Toronto, Ontario, Canada, October 2004.

[23] J. P. Sousa and D. Garlan. “Aura: An Architectural Frame-
work for User Mobility in Ubiquitous Computing Environ-
ments”. In 3rd Working IEEE/IFIP Conference on Software
Architecture, pages 29–43, August 2002.

[24] E. Swierk, E. Kiciman, N. Williams, T. Fukushima,
H. Yoshida, and M. Baker. “The Roma Personal Meta-
data Service”. Mobile Networks and Applications, 7(5),
September-October 2002.

[25] T. E. Truman, T. Pering, R. Doering, and R. W. Brodersen.
“The InfoPad Multimedia Terminal: A Portable Device for
Wireless Information Access”. IEEE Transactions on Com-
puters, 47(10), October 1998.

[26] R. Want, T. Pering, G. Danneels, M. Kumar, M. Sundar,
and J. Light. “The Personal Server: Changing the Way
We Think About Ubiquitous Computing”. In Proceedings
of UBICOMP 2002, June 2002.

[27] R. Want, B. N. Schilit, N. I. Adams, R. Gold, K. Petersen,
D. Goldberg, J. R. Ellis, and M. Weiser. “An Overview of
the ParcTab Ubiquitous Computing Experiment”. IEEE Per-
sonal Communications, 2(6):28–43, December 1995.

[28] M. Weiser. ”The Computer for the 21st Century”. Scientific
American, 265(3):94–104, September 1991.


